W'keitsrechnung

Integrieren, deklinieren, interpretieren, diffundieren oder subsumieren?
Antworten
Benutzeravatar
Burnett
Lt. Commander
Beiträge: 238
Registriert: 22.09.2004, 13:02
Wohnort: irgendwo in BaWü
Kontaktdaten:

W'keitsrechnung

Ungelesener Beitrag von Burnett » 16.06.2009, 11:01

Hey Leute,

kurze statistische Frage:

es handelt sich um diskrete Zufallsvariablen:

(Summe über x)*x* (Summe über y)* P(X=x,Y=y) = (Summe über x)*x*P(X=x)

Danke[/code]

Benutzeravatar
PdW
Moderator
Turtleboard Veteran
Turtleboard Veteran
Beiträge: 2357
Registriert: 08.03.2004, 17:21
Wohnort: bei München
Kontaktdaten:

Ungelesener Beitrag von PdW » 16.06.2009, 11:32

Was ist die Frage? ;)
... Signatur ist momentan im Wartungsmodus.

Benutzeravatar
Burnett
Lt. Commander
Beiträge: 238
Registriert: 22.09.2004, 13:02
Wohnort: irgendwo in BaWü
Kontaktdaten:

Ungelesener Beitrag von Burnett » 16.06.2009, 11:45

wie man vom linken Teil der Gleichung auf den rechten Teil der Gleichung kommt.

sry ;)

Benutzeravatar
groundzero
Rear Admiral
Turtleboard Veteran
Turtleboard Veteran
Beiträge: 3938
Registriert: 08.03.2004, 17:28

Ungelesener Beitrag von groundzero » 16.06.2009, 17:47

versteh das nicht....

gib das mal mit nem formeleditor ein (z.b. bei word dabei).
My Siren's name is Brick, and sheeee .... is the prettiest.

rootschopf
Cadet
Beiträge: 15
Registriert: 08.03.2004, 13:20

Re: W'keitsrechnung

Ungelesener Beitrag von rootschopf » 25.09.2009, 11:36

Ich versuchs mal in Worten und hole kurz aus.
P ist ein Wahrscheinlichkeitsmaß - es misst Wahrscheinlichkeiten oder nochmal anders: Es weist Ergeignissen Zahlen zu.
P(Y=y) ist die Wahrscheinlichkeit, dass die Zufallsvariable Y den Wert y (oder das Ereignis) annimmt.
Summiert man nun über alle möglichen Werte der Zufallsvariable Y, so ergibt die Summe all der dazugehörigen Wahrscheinlichkeitsmaße zu 1. Das geht aus der Definition von Wahrscheinlichketsmaßen hervor.
Mathematisch formuliert: Summe_{alle y} P(Y=y) = 1.

Damit gilt aber auch:
Summe_{alle y} P(X=x, Y=y) = P(X=x) für jedes beliebige x.
Der Rest ist dnn trivial.

Antworten